(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
half(s(s(x))) →+ s(half(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
half, inc, bitIter

They will be analysed ascendingly in the following order:
half < bitIter
inc < bitIter

(8) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
half, inc, bitIter

They will be analysed ascendingly in the following order:
half < bitIter
inc < bitIter

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Induction Base:
half(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'

Induction Step:
half(gen_0':s3_0(*(2, +(n5_0, 1)))) →RΩ(1)
s(half(gen_0':s3_0(*(2, n5_0)))) →IH
s(gen_0':s3_0(c6_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
inc, bitIter

They will be analysed ascendingly in the following order:
inc < bitIter

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)

Induction Base:
inc(gen_0':s3_0(0)) →RΩ(1)
0'

Induction Step:
inc(gen_0':s3_0(+(n311_0, 1))) →RΩ(1)
s(inc(gen_0':s3_0(n311_0))) →IH
s(gen_0':s3_0(c312_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
bitIter

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol bitIter.

(16) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)

(19) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
inc(gen_0':s3_0(n311_0)) → gen_0':s3_0(n311_0), rt ∈ Ω(1 + n3110)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
inc(0') → 0'
inc(s(x)) → s(inc(x))
zero(0') → true
zero(s(x)) → false
p(0') → 0'
p(s(x)) → x
bits(x) → bitIter(x, 0')
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Types:
half :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
inc :: 0':s → 0':s
zero :: 0':s → true:false
true :: true:false
false :: true:false
p :: 0':s → 0':s
bits :: 0':s → 0':s
bitIter :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s

Lemmas:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s3_0(*(2, n5_0))) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)

(24) BOUNDS(n^1, INF)